
Introduction
Previous work

Dual formulation
Wavelet approach

Reconstruction
Conclusion
References

Surface reconstruction from point
clouds using optimal transportation

Guillaume Matheron

June-August 2015

Internship supervised by Pierre Alliez and David Cohen-Steiner

Guillaume Matheron Surface reconstruction from point clouds



Introduction
Previous work

Dual formulation
Wavelet approach

Reconstruction
Conclusion
References

Input

Multiple and increasing variety of data sources
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Drones
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Satellites
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Cars
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Community data

Snavely [2009]
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Acquisition

Stereography / Photogrametry
Depth cameras

Challenge : Noise and outliers
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Surface reconstruction

Set of points → surface representation
Suited for simulation, storage, visualization...
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Problem statement

Discrete set of points → 2-manifold surface
Ill-stated problem

Idea : Interpret both as mass distributions.
Error metric for mass distributions : Wasserstein distance
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Optimal transportation

Wasserstein distance :

Wk(λ, µ)k = inf

{∫
d(x− y)kdπ(x, y) | π ∈ Π(λ, µ)

}
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Transportation as error metric

Digne et al. [2013]
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Digne et al. [2013]
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Finding the transport plan

"Easy" for discrete distributions using Linear Programming
(LP), but computationally intensive
Continuous distributions (faces) split into "bins"

→ (Digne et al. [2013])
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Kantorovich-Rubinstein’s dual formulation

W1(λ, µ) = inf

{∫
d(x− y)dπ(x, y) | π ∈ Π(λ, µ)

}
W1(λ, µ) = sup

{∫
f(λ− µ) | f continuous 1-Lipschitz

}
→ Quickly find an approximation of the best function f .
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Previous work

We have :

µ : discrete distribution (samples)
λ : piecewise-constant distribution (faces)

We use an analog of the Wasserstein metric :

E =
1

N

N∑
j=1

(∫
fjdµ−

M∑
i=1

wi

∫
fjdλi

)2

Where :
fj is a set of chosen functions
We solve for wi
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E =
1

N

N∑
j=1

(∫
fjdµ−

M∑
i=1

wi

∫
fjdλi

)2

rewritten as :

E =

N∑
j=1

(
bj −

M∑
i=1

wiaj,i

)2

Minimum reached when :

∀k, 0 =

N∑
j=1

aj,k

(
bj −

M∑
i=1

wiaj,i

)
→ Solution of linear system
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Choice of fj : bounded radial functions.
aj,i =

∫
fjdλi intensive to compute → Integrable in closed

form on triangles (Hubert [2012])

Open questions :
Placement of fj : very heuristic
Problem of validation
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Proposal

W1(λ, µ) = sup

{∫
fd(λ− µ) | f continuous 1-Lipschitz

}
LP program in 1D (discrete) :

minimize f(1)(λ(1)− µ(1)) + · · ·+ f(N)(λ(N)− µ(N))
with respect to f(1), · · · f(N)
such as |f(2)− f(1)| ≤ 1

...
|f(N)− f(N − 1)| ≤ 1

(1)
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Test case in 1D using Maple

Figure: The f function always has a slope of 1 (Lipschitz condition
attained)
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Generalization to 2D

Project samples and triangles on an N ×N lattice

LP with N2 variables
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Visualize f
Accurate and fast
Problem : Lipschitz constraints defined in only two directions
Complexity lower than previous approach for similar resolutions
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Wavelet Approach (Shirdhonkar and Jacobs [2008])
W1 ≈

∑
i

|T (λ)i − T (µ)i| 2−2·j(i)

T (λ)i : i-th coefficient of the Discrete Wavelet Transform (DWT) of
λ.
→ Linear time in the number of cells ! (O(N2))

→ → w = 0.35046

λ− µ → T (λ− µ) (coefficients arranged in matrix) → Result
Guillaume Matheron Surface reconstruction from point clouds
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Experiments

Global minimum not where we want it to be

Problem : normalization (weight of triangle = weight of all samples
< weight of "good" samples)
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Adjusting normalization

Problem : normalization (weight of triangle = weight of all samples
< weight of "good" samples)

W1 ≈
∑
i

|kT (λ)i − T (µ)i| 2−2·j(i)

Best k ?
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Convex optimization

Φ(k) =
∑
i∈E
|kT (λ)i − T (µ)i| 2−2j(i)

Let Φi(k) = |kT (λ)i − T (µ)i|.

Figure: Φi
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Convex optimization (cont.)

Φ is convex

Figure: Φ

O(log2(N
2)) evaluations of Φ :

Complexity O(N2 log2N)
Guillaume Matheron Surface reconstruction from point clouds
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Explicit enumeration

Φ(k) =
∑
i∈E
|kT (λ)i − T (µ)i| 2−2j(i)

Let kl =
T (µ)l
T (λ)l

.

Set of singular points : k ∈ {kl | l ∈ E}.

Compute and sort all singular points (set of kl)
Find smallest Φ(kl) via dichotomy (Φ is convex)

Complexity : O(N2 log2N)
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Results

Fixed normalization 0.0146 (best) 0.0231
Adjusted normalization 0.0267 0.0067 (best)
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Implementation

Wavelet transform using GSL

gs l_wave le t2d_nst rans fo rm_matr i x_forward ( . . . ) ;

Multi-threading using OpenMP

#pragma omp p a r a l l e l f o r
f o r ( i n t i = 0 ; i < n ; i++) {

/ / ( . . . )
#pragma omp atomic
t o t a l S imp l e xWe i gh t += w;

}

LP solving using Coin|Or
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Reconstruction

Use metric to build surface from points
Methods :

Vertex relocation
Coarse-to-fine (refinement, subdivision)
Fine-to-coarse (edge collapse, decimation)
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Vertex relocation

Input points
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Vertex relocation

Initialization
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Vertex relocation

Relocating vertices along gradient of W1
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Vertex relocation

After relocation
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Coarse-to-fine approach

Needs guided refinement operators.
Problem : we don’t have the transport plan
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Fine-to-coarse approach

Input points
Guillaume Matheron Surface reconstruction from point clouds
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Fine-to-coarse approach

Delaunay triangulation
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Fine-to-coarse approach

Removing vertices while minimizing ∆W1
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Fine-to-coarse approach

After decimation (5 vertices left)
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Fine-to-coarse approach

Remove three edges, minimizing ∆W1
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Limitations

Remove edges
→ Greedy and operator-guided for now
→ LP at each computation of W1 ?
Stopping criteria ?
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Conclusion

Computational aspects of optimal transportation
Wavelets are fast
→ scalable in 3D
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Future work

Local re-approximation of W1

Complexity-distortion tradeoff
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