SURFACE RECONSTRUCTION FROM POINT CLOUDS USING OPTIMAL TRANSPORTATION

Guillaume MATHERON

June-August 2015

Internship supervised by Pierre ALLIEZ and David COHEN-STEINER

Multiple and increasing variety of data sources

Guillaume MATHERON SURFACE RECONSTRUCTION FROM POINT CLOUDS

Drones

Guillaume MATHERON SURFACE RECONSTRUCTION FROM POINT CLOUDS

Satellites

Guillaume MATHERON SURFACE RECONSTRUCTION FROM POINT CLOUDS

э

・ロト ・ 一下・ ・ 日 ・

< 3

э

Community data

Snavely [2009]

Guillaume MATHERON SURFACE RECONSTRUCTION FROM POINT CLOUDS

- Stereography / Photogrametry
- Depth cameras

Challenge : Noise and outliers

Set of points \rightarrow surface representation Suited for simulation, storage, visualization...

Surface reconstruction

Problem statement

Idea : Interpret both as *mass distributions*. Error metric for mass distributions : *Wasserstein distance*

Optimal transportation

Wasserstein distance :

$$W_k(\lambda,\mu)^k = \inf\left\{\int d(x-y)^k \mathsf{d}\pi(x,y) \mid \pi \in \Pi(\lambda,\mu)\right\}$$

Transportation as error metric

Digne et al. [2013]

Digne et al. [2013]

Finding the transport plan

- "Easy" for discrete distributions using Linear Programming (LP), but computationally intensive
- Continuous distributions (faces) split into "bins"

$$\rightarrow$$
 (Digne et al. [2013])

Kantorovich-Rubinstein's dual formulation

$$W_1(\lambda,\mu) = \inf\left\{\int d(x-y)\mathsf{d}\pi(x,y) \mid \pi \in \Pi(\lambda,\mu)\right\}$$
$$W_1(\lambda,\mu) = \sup\left\{\int f(\lambda-\mu) \mid f \text{ continuous 1-Lipschitz}\right\}$$

 \rightarrow Quickly find an approximation of the best function f.

Previous work

We have :

- μ : discrete distribution (samples)
- λ : piecewise-constant distribution (faces)

We use an analog of the Wasserstein metric :

$$E = \frac{1}{N} \sum_{j=1}^{N} \left(\int f_j d\mu - \sum_{i=1}^{M} w_i \int f_j d\lambda_i \right)^2$$

Where :

- f_j is a set of chosen functions
- We solve for w_i

$$E = \frac{1}{N} \sum_{j=1}^{N} \left(\int f_j d\mu - \sum_{i=1}^{M} w_i \int f_j d\lambda_i \right)^2$$

rewritten as :

$$E = \sum_{j=1}^{N} \left(b_j - \sum_{i=1}^{M} w_i a_{j,i} \right)^2$$

Minimum reached when :

$$\forall k, 0 = \sum_{j=1}^{N} a_{j,k} \left(b_j - \sum_{i=1}^{M} w_i a_{j,i} \right)$$

 \rightarrow Solution of linear system

- Choice of f_j : bounded radial functions.
- $a_{j,i} = \int f_j d\lambda_i$ intensive to compute \rightarrow Integrable in closed form on triangles (Hubert [2012])

Open questions :

- Placement of f_j : very heuristic
- Problem of validation

Proposal

$$W_1(\lambda,\mu) = \sup\left\{\int f d(\lambda-\mu) \mid f \text{ continuous 1-Lipschitz}\right\}$$

LP program in 1D (discrete) :

 $\begin{cases} \text{minimize} & f(1)(\lambda(1) - \mu(1)) + \dots + f(N)(\lambda(N) - \mu(N)) \\ \text{with respect to} & f(1), \dots f(N) \\ \text{such as} & |f(2) - f(1)| \le 1 \\ & \vdots \\ & |f(N) - f(N-1)| \le 1 \end{cases}$ (1)

∃ ▶ ∢

Test case in 1D using Maple

Figure: The f function always has a slope of 1 (Lipschitz condition attained)

Generalization to 2D

Project samples and triangles on an $N\times N$ lattice

LP with ${\cal N}^2$ variables

- \bullet Visualize f
- Accurate and fast
- Problem : Lipschitz constraints defined in only two directions
- Complexity lower than previous approach for similar resolutions

Wavelet Approach (Shirdhonkar and Jacobs [2008])

$$W_1 \approx \sum_i |T(\lambda)_i - T(\mu)_i| \, 2^{-2 \cdot j(i)}$$

 $T(\lambda)_i$: i-th coefficient of the Discrete Wavelet Transform (DWT) of $\lambda.$

 \rightarrow Linear time in the number of cells ! ($O(N^2)$)

Guillaume MATHERON SURFACE RECONSTRUCTION FROM POINT CLOUDS

Experiments

Global minimum not where we want it to be

Problem : normalization (weight of triangle = weight of all samples < weight of "good" samples)

Adjusting normalization

Problem : normalization (weight of triangle = weight of all samples < weight of "good" samples)

$$W_1 \approx \sum_i \left| \mathbf{k} T(\lambda)_i - T(\mu)_i \right| 2^{-2 \cdot j(i)}$$

Best k ?

Convex optimization

-

Convex optimization (cont.)

 Φ is convex

Figure: Φ

 $O(\log_2(N^2))$ evaluations of Φ : Complexity $O(N^2\log_2 N)$

Explicit enumeration

$$\Phi(k) = \sum_{i \in E} |kT(\lambda)_i - T(\mu)_i| \, 2^{-2j(i)}$$

Let $k_l = \frac{T(\mu)_l}{T(\lambda)_l}$. Set of singular points : $k \in \{k_l \mid l \in E\}$.

- Compute and sort all singular points (set of k_l)
- Find smallest $\Phi(k_l)$ via dichotomy (Φ is convex)

Complexity : $O(N^2 \log_2 N)$

Results

Implementation

• Wavelet transform using GSL

gsl_wavelet2d_nstransform_matrix_forward (. . .);

• Multi-threading using OpenMP

```
#pragma omp parallel for
for (int i = 0; i < n; i++) {
    //(...)
    #pragma omp atomic
    totalSimplexWeight += w;
}</pre>
```

• LP solving using Coin|Or

Reconstruction

Use metric to build surface from points Methods :

- Vertex relocation
- Coarse-to-fine (refinement, subdivision)
- Fine-to-coarse (edge collapse, decimation)

Vertex relocation

Input points

Guillaume MATHERON SURFACE RECONSTRUCTION FROM POINT CLOUDS

Vertex relocation

Initialization

Guillaume MATHERON SURFACE RECONSTRUCTION FROM POINT CLOUDS

Vertex relocation

Relocating vertices along gradient of W_1

Vertex relocation

After relocation

Coarse-to-fine approach

Needs guided refinement operators. Problem : we don't have the transport plan

Fine-to-coarse approach

Input points

Guillaume MATHERON SURFACE RECONSTRUCTION FROM POINT CLOUDS

Fine-to-coarse approach

Delaunay triangulation

Fine-to-coarse approach

Removing vertices while minimizing ΔW_1

Fine-to-coarse approach

After decimation (5 vertices left)

Fine-to-coarse approach

Remove three edges, minimizing ΔW_1

Limitations

- Remove edges
 - \rightarrow Greedy and operator-guided for now
 - \rightarrow LP at each computation of W_1 ?
- Stopping criteria ?

Conclusion

- Computational aspects of optimal transportation
- Wavelets are fast
 - \rightarrow scalable in 3D

Future work

- Local re-approximation of W_1
- Complexity-distortion tradeoff

Bibliography

- J. Digne, D. Cohen-Steiner, P. Alliez, F. de Goes, and M. Desbrun. Feature-Preserving Surface Reconstruction and Simplification from Defect-Laden Point Sets. *Journal of Mathematical Imaging and Vision*, 2013.
- E. Hubert. Convolution Surfaces based on Polygons for Infinite and Compact Support Kernels. *Graphical Models*, 2012.
- S. Shirdhonkar and D. W. Jacobs. Approximate earth mover's distance in linear time. 2008.
- K. N. Snavely. *Scene Reconstruction and Visualization from Internet Photo Collections.* PhD thesis, 2009.