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Abstract Our objective is to use an approximation of the W1 distance (also referred to as "earth mover
distance") as an error metric for shape reconstruction. We present different new approaches to compute this
distance using wavelets and Kantorovich and Rubinstein’s dual formulation. We also sketch an algorithm for
shape reconstruction.

Figure 1: Point set approximated by polyline
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1 Introduction
Motivation Shape reconstruction is the process of converting a physical object into a digital model. This topic
has received a considerable interest, and has already many applications in simulation, medicine, urban planning,
art preservation and digital entertainment. Shape reconstruction is usually divided in two parts. First, a set of
points is sampled on the surface of the physical object using various methods (such as depth cameras, stereo
photography or laser scanning), then this set of points is converted to an appropriate surface representation, such
as a triangulated surface. We are only focusing on the second step : converting a set of points into a surface.
Ideally we wish to minimize the complexity distortion trade-off, but there is no universal consensus about the
best way to define them.

Review The current popular method for surface reconstruction from a point set in industrial applications is
Poisson reconstruction approach (see Figure 2). However it only handles smooth and closed shapes, and usually
requires preprocessing steps to filter noise and outliers, which limits its applications.

Figure 2: Surface reconstruction from point set using Poisson reconstruction [1]

The EM approach offers several advantages over other reconstruction methods, as described in [2].
• It preserves features such as sharp edges.
• It is very robust to outliers and noise.
• It allow a broad range of algorithms (both coarse-to-fine and fine-to-coarse).

Problem statement We take as input a point set sampled from a physical object. We interpret this set as a
discrete measure, i.e., a distribution of masses.
We wish to generate as output a simplicial complex which is the support of a continuous measure
The usual metric for computing a symmetric distance between two mass distributions is the Wasserstein distance.
We need a efficient way to compute the metric and a way to build the simplicial complex using mesh operators.

2 Optimal transportation
Wasserstein distance The Wasserstein distance between two probability measures λ and µ is :

Wp(λ, µ) =

(
inf

γ∈Γ(λ,µ)

∫
M×M

d(x, y)pdγ(x, y)

)1/p

(1)

where Γ(λ, µ) denotes the collection of all measures on M ×M with marginals λ and µ on the first and second
factors respectively.
In this internship, we only use W1.

Transportation theory Assume a finite set M of items that we want to move (M ⊂ R2, and no two objects
have the same position). If m ∈M , T (m) ∈ R2 denotes the place where we want to move m,
then the overall cost of moving all objects to their new positions is

∑
m∈M ‖m− T (m)‖p.

Optimal transportation Assume another set N ⊂ R2, such that |M | = |N | (where | · | denotes cardinality).
We want to move all objects in M to N. We want to minimize the cost of moving all objects.
In other words, we want to find :

inf
T

∑
m∈M

‖m− T (m)‖p

where T is a bijection from M to N . T is called the optimal transport plan.
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This is called the Min-weighted complete graph matching problem.
In our case, each mass can be split and transported to all points of N , which makes the problem even more
computationally intensive.

Computational aspect The usual way to solve for W1 in a context where each element can have a different
weight is to solve for the fraction of each element of M that goes to any point in N . Using constraints, this
yields a linear system with |M |2 variables. This approach was used in [2], but is very slow since it involves
splitting each edge and each face into discrete bins, and solving a Linear Problem with many variables.

References For more background on optimal transportation, especially the continuous formulations, we refer
to a reference book from Villani [3].
Several authors have investigated other ways to compute approximations of the optimal transport plan [4, 5].

3 Dual formulation
If λ and µ are two bounded distributions, the W1 distance (also referred to as EM distance) can be obtained
using this dual formula (also known as Kantorovich-Rubinstein formula) :

W1(λ, µ) = sup
f

(∣∣∣∣∫ fdλ−
∫
fdµ

∣∣∣∣ , f real cont.,Lipschitz(f) ≤ 1

)
(2)

3.1 Previous approach
A previous unpublished approach defined the following energy to approximate qualitatively the W1 distance :

E =
1

N

N∑
j=1

(∫
fjdµ−

M∑
i=1

wi

∫
fjdλi

)2

Where fj is a set of pre-defined functions and λi denotes the triangles in the reconstruction. Each triangle’s
density of measure is weighted by a coefficient wi that we choose in order to minimize the energy.
The energy can be rewritten as :

E =

N∑
j=1

(
bj −

M∑
i=1

wiaj,i

)2

The minimum is reached when :

∀k, 0 =

N∑
j=1

aj,k

(
bj −

M∑
i=1

wiaj,i

)
Which can be found as the solution of linear system.
This approach has several degrees of freedom (that are open questions) :

• The choice of functions fj (previous work focuses on finite support functions integrable in closed form on
triangles, using [6]).

• The placement of function centers (uniform or data-dependent).
One of the initial objectives of my internship was to investigate the best way to define the functions, and I
contributed an alternative approach.

3.2 Proposal
My approach is to compute explicitly the value of f in Kantorovich-Rubinstein formula on the centers of the
cells of a uniform grid.
I rasterize the triangles and the samples on a uniform grid, then compute the explicit value of f on each point of
the grid via linear programming (LP).
This yields an approximation of the EM distance between λ and µ
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In 1D, we can immediately translate (5) into a LP program :

minimize f(1)(λ(1)− µ(1)) + · · ·+ f(N)(λ(N)− µ(N))
with respect to f(1), · · · f(N)
under constraints |f(2)− f(1)| ≤ 1

...
|f(N)− f(N − 1)| ≤ 1

(3)

We can reformulate each constraint of the form |f(i+ 1)− f(i)| ≤ 1 by f(i+ 1)− f(i) ≤ 1 and f(i)− f(i+ 1) ≤ 1
to obtain only linear constraints.
We can thus find f by solving a LP problem with N variables and 2N − 2 constraints.

3.3 2D case
Apart for the obvious problem of having N2 variables instead of N , 2D brings its own set of problems :

1. There is no obvious way of defining a function on a lattice in 2D so that it admits a 1-Lipschitz continuation
on R2.

2. The support of λ is a set of triangles. We need to rasterize them onto the grid.
We use a Manhattan distance on R2 by enforcing that f has a maximum slope of 1 along the edges of the lattice.
The triangles are rasterized onto the grid using the following algorithm :

To know the value o f λ at a s p e c i f i c c e l l c en t e r po int :
− Build the square c e l l
− For each t r i a n g l e that i n t e r s e c t s t h i s c e l l , compute the area

o f the i n t e r s e c t i o n and add i t to the value o f λ

Figure 3: Rasterization of samples and triangles on the grid
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Figure 4: Function f computed by LP (edges of the triangulation are weighted with uniform linear mass)

In Figure 4, the triangulation is fitted to the samples, but extra edges are added. f is as high as possible (blue)
where λ > µ and low (white) where µ < λ, under the constraint that its slope does not exceed 1 in horizontal
and vertical directions.

4 Wavelet formulation
Shirdhonkar and Jacobs [7] introduced an approach to approximate the Earth-Mover distance using wavelets,
which is a multi-resolution approach. It takes a distribution of masses on a grid as an input (a matrix of real
coefficients).

4.1 How to approximate W1 using wavelets
We compute the coefficients of λ and µ on the grid and arrange them in 2D matrices (also called λ and µ) (as
discussed in section 3.3), then compute their wavelet transform. If the histograms have a size of n × n, this
yields n2 coefficients, arranged in a recursive matrix pattern. Shirdhonkar and Jacobs [7] provide the following
approximation :

W1 ≈
∑
i

|W (λ)i −W (µ)i| 2−2·j(i)

where the sum is computed over all n2 wavelet coefficients, W (λ)i and W (µ)i are the coefficients of the wavelets
transforms of λ and µ, and j(i) is the scale of the wavelet i.
Note that since the wavelet transform is linear, we can either compute the wavelet transform of λ−µ, or compute
both transforms separately, then the difference. We will use the second approach since the distribution of samples
is constant during the execution of the reconstruction algorithm, whereas the simplex changes (this way we have
to parse the samples only once).
Note also that the wavelet transform of the histogram of a uniform triangle is sparse.

4.2 Proof
We now summarize of the proof contributed by [7].

Wavelet series representation A function f in Rn can be represented as a wavelet series [8] :

f(x) =
∑
k

fkΦ(x− k) +
∑
λ

fλΨλ(x), (4)

where Φ and Ψ are the scaling and wavelet functions. In our experiments we use the wavelet Daubechies 4,
depicted in Figure 5.
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Figure 5: Daubechies 4 wavelet. Scaling function Φ (left) and wavelet function Ψ (right)

k runs in Zn (where n is the dimension of f), and λ = (ε, j, k) ∈ {1, 2, ..., 2n − 1} × N× Zn = Λ.
The set of all λ with a fixed j is noted Λj .
We define :

Ψ(ε,j,k)(x) := 2nj/2Ψε(2jx− k).

A wavelet Ψ is said to have regularity r ∈ N if it has derivatives up to order r and all of them (including Ψ itself)
have fast decay (i.e. they decay faster than any reciprocal polynomial when x→∞).
For orthonormal wavelets, the coefficients can be computed as :

fk(x) =

∫
f(x)Φ̄(x− k)dx

f(ε,j,k)(x) =

∫
f(x)Ψ̄λ(x)dx

Where Φ̄ and Ψ̄ denote the complex conjugates of Φ and Ψ.
Let us remind that :

W1(λ, µ) = sup

(∣∣∣∣∫ fdλ−
∫
fdµ

∣∣∣∣ , f real cont.,Lipschitz(f) ≤ 1

)
(5)

Let 0 < s < 1.
Let CH(f) := supx 6=y

|f(x)−f(y)|
‖x−y‖s .

The constraint Lipschitz(f) ≤ 1 can be stated as : CH(f) < 1.
The following theorem [8] characterizes functions that satisfy this constraint :

Theorem 1. A function f ∈ L1
loc(Rn), (i.e. |f | is integrable over all compact subsets of Rn) belongs to Hölder

class Cs(Rn) if and only if, in a wavelet decomposition of regularity r ≥ 1 > s, the approximation coefficients fk
and detail cefficients fλ satisfy : |fk| ≤ C0, k ∈ Zn and |fλ| ≤ C12−j(n/2+s), λ ∈ Λj, j ≥ 0 for some constants
C0 and C1

The authors derive the following lemma :

Theorem 2. For 0 < s < 1, if the wavelet series coefficients of the function f are bounded as in theorem 1,
then f ∈ Cs with CH(f) < C such that :
a12(Ψ, s)C1 ≤ C ≤ a12(Ψ, s)C0 + a22(Ψ, s)C1

for some positive constants a12, a21 and a22 that depend only on the wavelet and s. For discrete distributions,
the same condition holds for s = 1 as well.

Main result :

Theorem 3. Consider the Kantorovich-Rubinstein problem with the cost function c(x, y) = ‖x − y‖s, s < 1.
Let pk and pλ be the wavelet transform coefficients (approximation and detail, resp.) of the difference density p
generated by the orthonormal wavelet-scaling function pair Φ and Ψ with regularity r ≥ 1 > s. Then for any
constants C0 and C1 > 0, µc = C0

∑
k |pk|+ C1

∑
λ 2−j(s+n/2)|pλ| is an equivalent metric to the KR metric.

For discrete distribution the same result holds with s = 1.
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4.3 Experiments
The authors recommend Symlet 5 as a best wavelet, which is not provided by GSL (Gnu Scientific Library). We
thus used Daubechies 4.
One caveat is that the GSL library only provides a few different wavelets ([7] specifies that the best wavelet is
the Symlet 5, which is not provided by GSL, although the difference is very small.)
GSL only details the output format in 1D, but using the description from [7] solves the problem.
This algorithm is vastly faster than the LP approach (it takes 5 milliseconds to compute the EM distance on a
64× 64 grid).
However, this approach revealed a weakness of our model : the EM distance was not very robust to outliers.

Figure 6: With many outliers, the global minimum (right) is incorrect

Indeed, the normalization is done do that the triangle has the same weight (i.e., total measure) as all the samples,
but if there are many outliers, when the triangle is perfectly fitted, the weight of the samples in the triangles is
lower than the weight of the triangle. This induces a large transportation cost.

4.4 Exhausting the optimization space
4.4.1 Process

In order to explore the optimization space (especially to find local minimums), we performed the following
experiment :
We automatically generate many possible triangles, and measure their optimal transport distance to a fixed set
of points. Each of the six coordinates of the triangles are chosen in a set of 20 distinct values, which produces
206 = 64 million distances.
The data is imported into a MySQL database.

4.4.2 Interpretation of results

This figure depicts the best W1 distance achievable once the position of the first point of the reconstruction is
fixed.
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Figure 7: color(x, y) := infx2,y2,x3,y3 W1(samples, triangle(x, y), (x2, y2), (x3, y3)). The artifact in the top-right
hand corner is due to the fact the computation is stopped before the end

As shown in Figure 7 the three corners of the triangle corresponding to the global minimum in the energy
landscape. Note that the local minimum for this projection (at the top-right), may not be a local minimum for
the global optimization space.

4.5 Adjusting normalization
So far we made the assumption that all faces of the simplicial complex have the same uniform measure. This
restricts the input to uniformly-sampled surfaces, which is less general than the piece-wise uniform case (in
which each face can have a different weight). In [2], a linear system is solved to determine the weight of each
element of the simplex.
We can mitigate the problem discussed in section 4, page 6 by using a single, adjustable weight for the whole
reconstruction. This way only one scalar parameter k is added to our optimization problem. This means
replacing the normalized histogram λ by kλ.
However, we would like to decouple it from the other parameters (which describe the shape of the simplex).
We wish to find k that minimizes W1, when the shape of the simplex is fixed. There are several ways to do this.
Let E = {wavelet i |W (λ)i 6= 0}.
Thanks to the linearity of the wavelet transform and the simple closed-form formula 4, some of the methods
below can be adapted to allow a different weight for each triangle with little additional cost.

4.5.1 Dichotomy

Let W (λ) denote the wavelet transform of the histogram λ.
We have

W1 ≈
∑
i

|W (kλ)i −W (µ)i| 2−2·j(i).

The wavelet transform is linear, and we expect #E to be substantially smaller than N (see section 4.1, page 6),
so

W1 ≈ C +
∑
i∈E
|kW (λ)i −W (µ)i| 2−2·j(i),

where C =
∑
i/∈E |W (µ)i| 2−2·j(i) is a constant that does not depend on k, albeit it depends on λ (through E).

With C, W (λ) and W (µ) precomputed, we can compute the estimate with complexity O(#E).
With a dichotomy process, we need to compute this estimate − log2 ε times to get koptimal within a tolerance of
ε.
This method thus has a complexity of O(#E log2

(
1
ε

)
)
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4.5.2 Convex optimization

We define the approximation we compute for a given k as Φ(k)

Φ(k) = C +
∑
i∈E
|kW (λ)i −W (µ)i| 2−2j(i) (6)

We define the set of functions Φi(k) = |kW (λ)i −W (µ)i|. All these functions are convex (see Figure 8)

Figure 8: Curve of function Φi

Therefore, Φ is convex, as depicted by Figure 9

Figure 9: Curve of function Φ

In one dimension (we chose to optimize only one variable k), this method is not faster than a simple dichotomy.
If we later decide to set a different weight for each triangle of the simplex, this method may become interesting.

4.5.3 Explicit enumeration

Another method is to enumerate all the singular points in the graph (see Figure 9) and find the best one.

The set of singular points is k ∈
{
W (µ)l
W (λ)l

| l ∈ E
}
.

Let kl =
W (µ)l
W (λ)l

.

The values at these points are Φ(kl) = C +
∑
i∈E

∣∣∣W (λ)i
W (λ)l

W (µ)l −W (µ)i

∣∣∣.
It takes O(#E2) to compute Φ at each singularity and find the best.
A more efficient algorithm starts by computing all the singular points, sorts them and then performs a dichotomy
to find the minimum. This brings the complexity down to about O(2 |E| log2 |E|).
Our experiments confirm that computation times are reduced. Most singular points k lie outside of the [0, 1]
range, so we can eliminate them early on from E to speed up computation.

4.5.4 Linear programming

Another look at Φ (6) reveals that it can be translated into a linear problem 1.
1http://math.stackexchange.com/questions/432003/converting-absolute-value-program-into-linear-program
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minimize
∑
i ui2

−2j(i)

with respect to k, u1, u2, · · · , uN

subject to ∀i,
{

kW (λ)i − ui ≤W (µ)i
−kW (λ)i − ui ≤ −W (µ)i

This linear problem has N + 1 variables and 2N constraints, so it should have an approximate complexity of
O(N3) (based on results with random matrices).
However, the constraint matrix is sparse for two reasons :

• In each constraint, only two variables (k and ui) are involved.
• We expect most W (λ)i coefficients to be 0 (see section 4.1, page 6).

We can take advantage of this by examining what the constraint becomes when W (λ)i = 0.{
kW (λ)i − ui ≤W (µ)i
−kW (λ)i − ui ≤ −W (µ)i

⇔ −ui ≤W (µ)i ≤ ui
⇔ ui ≤ |W (µ)i|

Since we want to minimize
∑
i ui2

−2j(i), we can immediately set ui = |W (µ)i|, and remove ui as a variable.

We remind that E = {wavelet i |W (λ)i 6= 0}.
The LP problem is re-written as :

minimize
∑
i∈E ui2

−2j(i)

with respect to k, {ui|i ∈ E}

subject to ∀i ∈ E,
{

kW (λ)i − ui ≤W (µ)i
−kW (λ)i − ui ≤ −W (µ)i

This linear problem has 1 + |E| variables and 2|E| constraints, we can thus solve it in O(|E|3).

4.5.5 Conclusion

Explicit enumeration is the best approach here in terms of speed. However, if in the future we want to give
independent weights to each triangle (i.e., have several k and a piecewise-constant measure), explicit enumeration
will be exponential in the number of triangles, and the LP approach may become more viable.
Note that the article [7] does not specify what happens when we input the wavelet transforms of non-normalized
distributions.

4.6 Implementation and testing
I implemented the explicit enumeration method using the same setup as in section 4.4, and did not see any
noticeable slowdown. The first tests showed it solved perfectly the problem illustrated in Figure 6 (page 8).

The experiment showed that the expected triangle is indeed the global minimum, and that |E| (the number of
non-null wavelets) is about 25% of N2.
After optimization (keeping the samples matrix µ in cache, etc...), I was able to compute the EM distance in
about 30 ms with a 512x512 grid.

Parallel programming There are two ways to speed up this algorithm using parallel processing :
1. Run the algorithm on several threads. Many of the operations that we have to perform to compute the

EM distance can be computed in parallel.
2. Reconstruction requires computing a large number of EM distances against different polygons. This can

be performed in parallel with each EM distance computation running on a single thread.
I first considered implementing parallel processing using CUDA on a GPGPU, but I did not have any GPGPU
hardware available during my internship, so I used OpenMP to unfold the loops in the algorithm, but did not
get any performance improvement, probably because of the big overhead of OpenMP, and the low number of
cells in the 2D toolbox.
However, when dealing with many triangles, parallel programming greatly improves performance.
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Previous bad result Expected best triangle

Value without k 0.0146 (best) 0.0231
Value with k (new method) 0.0267 0.0067 (best)

Figure 10: Global minimum found by the exhaustive exploration algorithm, performed using both metrics
(normalized and adjusted)

5 Reconstruction algorithm
We wish to use the fast error metric discussed above to guide a reconstruction algorithm that is able to turn a
samples set into a triangulation or set of edges.

5.1 Through vertex relocation
The simplest way to use the metric is to perform a vertex relocation.
Starting with a reconstruction that has the right topology and is not too complex, we move points of the
reconstruction one at a time, improving each time the value of W1.

Parameters : R and B ( depends on the s c a l e o f the samples s e t )
1 − Se l e c t a random vertex from the cur rent t r i a n g l e
2 − Se l e c t a random d i r e c t i o n ~u ( un i t vec to r )
3 − I f cnt ≤ A , s e t ~d = B~u ,
e l s e s e t ~d = r~u , with r s e l e c t e d randomly between 0 and R .
4 − Move the s e l e c t e d ver tex by the disp lacement vec to r ~d , and increment cnt .
5 − Re−compute the EM di s t anc e . I f i t i s lower than be f o r e the r e l o c a t i on ,
s e t cnt := 0 and move to step 4 us ing the same ~d
Else move to step 1

Figure 11: The relocation algorithm matches the samples even with outliers and noise, from any starting position.

5.2 Reconstruction of 2D contours
The 2D equivalent of 3D surface reconstruction is not 2D surface reconstruction but 2D contour reconstruction.
We now discuss the reconstruction of 2D contours.
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Instead of using samples consisting of a filled triangle, we investigate the reconstruction of a triangle outline,
and instead of having a triangulation as the reconstruction mesh, we use a closed polyline.

Figure 12: 2D contour reconstruction versus 2D surface reconstruction

5.2.1 Non-convex optimization space

A problem with this approach is the standard relocation algorithm (see section 5.1) gives a local minimum
corresponding to a degenerate triangle on one edge of the samples set.

Figure 13: Degenerate reconstruction

The problem was obvious when plotting the value of w for different reconstructions, as illustrated below :

Figure 14: Reconstructions with different vertex locations to explore the optimization space (from left to right,
x = −0.3, x = 0.0, x = 0.4, x = 0.75, x = 1, x = 1.2)

13



Figure 15: Projection of the optimization space. x-axis is the position of the third point of the triangle, as
described in the caption of Figure 14

Notice that the curve is very noisy, which can be explained by floating-point approximation and discretisation
due to rasterization on the grid. We clearly see the local minimum when x = 0, but the global minimum is at
x = 1, as expected. The maximum is reached when x = 0.5.
This problem prohibits vertex relocation when the initial reconstruction is not close enough to the samples.
Another approach could be to provide operators that can "jump" on the other side of the pass.
This curve also shows that it may be difficult to do gradient-descent algorithms efficiently, because of the noise.
A possible fix could be to sample the gradient at several scales to do a weighted average and get an accurate
prediction of the best relocation operation.

5.2.2 Exhausting the optimization space

We used the same process as described in section 4.4. Because no optimizations are performed, the computation
is slower and is performed with only 10 values for each of the 6 dimensions of the optimization problem.

First projection This figure depicts the best W1 distance achievable once the position of the first point of
the reconstruction is fixed.

Figure 16: color(x, y) := infx2,y2,x3,y3 W1(samples, triangle(x, y), (x2, y2), (x3, y3)).

We clearly see the three corners of the triangle that correspond to the global minimum.

Second projection I fixed the two lower points to their optimal position, and plotted the EM distance against
the position of the third point
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Figure 17: Value of W1 for each possible position of the third point, with the two bottom points fixed

The figure above clearly shows the local minimum along the lower segment that is preventing our relocation
algorithm from working properly.

Conclusion The experiments above show that reconstruction of a polygon though vertex relocation suffers
from local minimums. Other methods discussed below yield better results.

5.3 Fine-to-coarse triangulation decimation
We used another algorithm, that creates a triangulation from all the samples (initially a Delaunay triangulation),
and then greedily removes vertices using the metric described above to choose the best vertex at each round.
Here is the result of removing vertices using the metric :

Figure 18: Samples and reconstruction using triangulation decimation. Note the inner and outer edges

We always have a convex triangulation, and inner edges are still present.
These edges can be subsequently removed greedily using the same metric, which yields the correct result :
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Figure 19: Inner and outer edges removed using the same algorithm

The result can be further improved using vertex relocation, now that we have the right topology and are close
enough to the final result to avoid local minima.
However, the operator has to decide in advance how many edges and vertices should be kept. In addition, the
presence of inner and outer edges confuses the decimation algorithm. Ideally the algorithm would be able to
choose at each step any subset of the triangulation edges to hide, to avoid being greedy. However, this has an
exponential complexity in the number of edges.
There is a polynomial way to achieve this using the linearity of the wavelet transform. However, this would
require computing and storing the wavelet transform of each individual edge.

5.4 Conclusion
The use of wavelets provides a very fast metric for shape reconstruction.

Future work The reconstruction algorithm should have a better termination condition than simply a number
of vertices. This could be achieved by defining a complexity-distortion trade-off, and minimizing it.
To improve performance further, it should be possible to re-evaluate W1 locally using the linearity of the wavelet
transform, and the fact that the wavelet transform of a small input is sparse.

6 My internship experience
Previous experiences Before this internship I already had a few experiences at Inria Sophia-Antipolis with
Éric Madeleine and Thierry Vieville. My first internship was in 2009 and I mainly did web programming and
observation. I then came back in 2011, and did web programming, Java development and project guidance for
Java’s Cool. My third experience was in 2012, and I started researching Q-Learning algorithms, and programmed
a web-based educative toolbox.

This experience This fourth experience was a radical break from all previous internships : the background I
acquired during prépa and L3 allowed me to dive straight in a near-unexplored area of cutting-edge research.
Since there were nearly no precedent works in this area, I was able to make critical decisions about the orientation
of my research.

My contribution My supervisor and other colleagues gave me a very valuable hindsight of the domain, but
I was still able to give good ideas and argue what direction seemed more promising. For instance, I chose
to drop the idea of choosing a different weights for each face of the simplex, and to map the f function of
Kantorovich-Rubinstein explicitly using LP.
I included my code in an existing toolbox developed by another intern.
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